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Abstract

Developing models of the dynamic and complex pattemns of information processing that take place during behavior is a major
thrust of systems neuroscience. An underlying assumption of many models is that the same set of rules applies across
different conditions. This has been the case for directional tuning during volitional movement; a single cosine function has
been remarkably robust for describing the encoding of movement direction in different types of neurons, in many locations of
the nervous system, and even across species. However, detailed examination of the tuning time course in motor cortex
suggests that direction coding may be labile. Here, we show that there are discrete time epochs within single reaches, between
which individual neurons change their tuning. Our findings suggest that motor cortical activity patterns may reflect consistent
changes in the state of the control system during center-out reaching. These transitions are likely linked to different
behavioral components, suggesting that the task defines changes in the operational structure of the control system.
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Introduction movement directions. Direction was shown to be “encoded” in a

Understanding and modeling the dynamic activation of neural
ensembles is a major goal of systems neurophysiology. The
pioneering experiments of Georgopoulos et al. (1982) in which
monkeys reached to radial targets from a central start position
showed that the tuning relation between single-unit neural fir-
ing rates in the motor cortex and movement direction could be
fit with a broad cosine tuning function that spanned all

way that was determined by a neuron’s “preferred direction” (PD;
direction of peak firing). These features were used in the popula-
tion vector algorithm (PVA) to extract movement direction from
neural activity (Georgopoulos et al. 1983). Cosine tuning has since
been shown to be robust for many paradigms and characterizes
unit activity recorded in structures throughout the neural axis
during movement (Schwartz 1994a, 1994b; van Hemmen and
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Schwartz 2008). This type of broad tuning has been expanded to
multiple parameters describing the motion of the arm, wrist, and
fingers, and, as a general descriptor of upper limb dynamics,
forms the basis for brain—computer interfaces in which recorded
neural activity drives the movement of external devices
(Wessberg et al. 2000; Serruya et al. 2002; Taylor et al. 2002;
Hochberg et al. 2006; Wodlinger et al. 2015). However, evidence is
accumulating that a cell's PD may be unstable (Sergio and
Kalaska 1998; Churchland and Shenoy 2007; Hatsopoulos et al.
2007; Suminski et al. 2015). Directional tuning may even change
within the course of a single reaching movement. Because of
these rapid changes in a neuron’s directional sensitivity, the
canonical aspect of a cell's PD and the meaning of directional
tuning have been called into question.

We carefully examined changes of direction representation
in motor cortical discharge as reaching takes place. In simula-
tion, we determined that complex firing rate patterns and appar-
ent tuning lability can result from neuronal tuning to multiple
kinematic variables. However, even though adding more kine-
matic parameters in the simulation could lead to tuning lability,
it did not account for the within-trial changes observed in the
actual data. Instead, we found discrete, consistent changes
between 3 well-defined epochs across the population of neu-
rons. As we will show, many neurons display stable PDs within
each of these epochs. During the sharp transitions between tun-
ing epochs, modulation dropped to a minimum. These transi-
tions corresponded to different phases of the reach, suggesting
that the tuning changes were driven by the behavioral structure
of the task.

The tuning functions generated in the original center-out
experiments compared the “mean” discharge rate, a single num-
ber calculated across the duration of movement, to a single move-
ment direction from the center position to the target. When
expanding these findings to account for task dynamics, the sim-
plest assumption would be that the model was stationary—the
same model would be valid at each time point through the trial. If
the hand moves in a straight line from the center position to the
radial target, direction-induced neural modulation should be con-
stant during the trial. According to the cosine tuning model, if
direction is the only factor governing the firing rate of a neuron, a
profile of firing rate versus time, throughout a movement, should
be flat (Fig. 1A).

Firing Rate
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The problem can be formalized with a simple planar model
used in the original 2D center-out task:

A= ﬁo + ﬁxDx + ﬁyDy» (@)

where 1 is the firing rate of a cell, D,, Dy are coordinates of a
unit vector pointing in the movement direction, B, is baseline
firing rate, B, and p, are the coordinates of a vector in the cell’s
PD with modulation depth m = /ﬁi + ﬁ?]. If D, and D, are con-
stant (straight movement), then the neuron’s firing rate should
remain unchanged throughout the trial.

Although the basic finding of cosine tuning has been con-
firmed repeatedly, motor cortical firing during reaching move-
ments is rarely constant. This suggests that either a neuron’s
discharge rate is governed by additional, non-directional fac-
tors (requiring an extension of the original cosine-tuning
model) or that the directional specificity of each neuron
changes during the reach (with the possibility that direction
coding in general may be invalid). Trial-averaged firing rate
profiles of motor cortical firing rates are almost always phasic,
with peaks and valleys at different points within the reach,
resembling the examples shown in Figure 1B or C. This shows
that simple direction encoding by these neurons is not, by
itself, an adequate description of motor cortical function, moti-
vating investigators to consider the effect of movement vari-
ables other than direction on firing rate. The simplest of these
are position and its successive derivatives, velocity and acceler-
ation (Ashe and Georgopoulos 1994). In single neurons, interac-
tions between direction and these additional parameters can
produce complex changes in firing rate with temporal instabil-
ity in both the amplitudes and PDs of directional tuning. In this
paper, we first confirm the temporal instability of directional
tuning during single reaches (Fig. 3), then show that extending
the model with non-directional parameters does not account
for this observation (see Supplementary Fig. 3). Finally, we
describe distinct phases of the reach, defined by each neuron’s
directional modulation, in which tuning is robust and stable
(Figs 4 and 5). This indicates that direction is a major determi-
nant of firing rate, but suggests the existence of distinct states
within a single reach. The step-changes in PD, clearly evident
in our results (Fig. 4E), signify discrete segmentation of neural
processing during reaching.
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Figure 1. Simulated examples of tuning vs. time. Each example is composed of 8 straight, center-out, point-to-point reaches. The top row is the firing rate time course
of the simulated neuron, with colored traces corresponding to movement in a particular direction. The bottom row shows the PD calculated in separate bins through-
out the trial. (A,D) A canonical neuron that behaves according to the classic cosine model, in which direction is the only determinant of firing rate. Assuming a
straight movement, the firing rate would be a step-function and constant during the movement. The PDs of tuning functions calculated in small windows throughout
the trial are constant across windows. (B,E) A more typical firing rate pattern in which the neuron shows several peaks of firing during reaching. In this case, the
entire length of the profile is scaled uniformly by direction and the PD is stationary. (C,F) A neuron with varying modulation patterns during the trial. Neural modula-
tion again has multiple components during the reach, but firing rate is both direction- and time- dependent. At each point in time, direction has a different effect on
firing rate. In this case, the PD changes continually through the trial.
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Materials and Methods

Behavioral Task, Neural Recording, and Neural Data
Processing

Rhesus monkeys (Macaca mulatta, male, 3 animals) were seated
in a primate chair, with one arm restrained. An infrared marker
was attached to the free hand and 3D position was monitored
at 60Hz using an Optotrak 3020 motion capture device
(Northern Digital Inc.). The monkeys could not see their moving
arm, but instead observed a computer monitor showing a vir-
tual reality (VR) environment where the position of the hand
was represented by a spherical cursor. The scene was displayed
in 3 dimensions using a depth-displaying monitor (Virtual Window,
Dimension Technologies Inc.). The monkeys were trained to per-
form a center-out reaching task in which they had to move the
cursor from a starting location toward radial targets equidistant
from the center. Workspace radii were 7.4, 6.5, and 8.0cm for
monkeys C, F, and N, respectively. Monkeys C and N performed
a version of the task with targets arranged in a 2D plane, while
monkey F performed the task with a 3D arrangement of targets
(Fig. 2). Monkeys C and F were required to hold the position of
the target for a few hundred milliseconds. Monkey N was not
required to hold, but instead was allowed to return back to the
home position immediately. All movement conditions were pre-
sented in a pseudo-random fashion: failed trials were returned
to the queue until each set was completed. Monkey C performed
47 repetitions to each of 16 targets; monkey F performed 26 repe-
titions to each of 26 targets; monkey N performed 40 repetitions
to each of 58 targets. Additional information about the data sets
is detailed in Supplemental Experimental Procedures 1.

We determined 5 task-related and kinematic events for each
trial: Target show, movement onset, peak velocity, movement
offset, and the end of a hold period (“hold off”). Movement onset
and offset times were defined as the point when hand speed
passed 15% of its maximum. Electrical activity from single neu-
rons was recorded extracellularly using chronically implanted
96-channel “Utah” electrode arrays (Blackrock Microsystems)
implanted approximately in the arm area of the pre-central gyrus
(for locations see Supplementary Fig. 1).

We recorded 93, 119, and 185 single units for C, F, and N,
respectively. For monkeys F and N, waveform snippets were
stored for each threshold crossing and neuronal spikes were
sorted offline using “Offline Sorter” (Plexon Inc.). For monkey C,
single units were sorted manually online, with sorts adjusted
periodically to maintain isolation as needed. Neural data recorded
from monkeys N and C were collected over one day. For monkey
F, neural data were collected over 5 consecutive recording days.
To average across days, units were identified as being the same
using multi-day unit identity analysis (Fraser and Schwartz 2012).
This was accomplished by calculating a similarity score derived
from 4 independent metrics: Mean firing rate, spike waveform,
auto-correlation, and cross-correlation with the rest of the popu-
lation (see also Supplemental Experimental Procedures 2).

Spike trains from each unit were binned in 20 ms intervals
to compute instantaneous firing rate. A Gaussian kernel with
standard deviation of 50 ms was used for smoothing. The hand
position values were resampled and interpolated to match the
time steps of the firing rates using the function “pchip” in
Matlab. On each trial, we took movement onset to be time zero
and then aligned across trials to additional landmarks at target
show, peak velocity, movement offset, and, for monkeys C and
F, hold off. This was accomplished by choosing the number of
bins between each landmark so that the average bin size was
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Figure 2. Experimental design and kinematic results. (A) Monkeys reached for
radial targets displayed in a 3D computer monitor. (B) Representative kinemat-
ics from a single monkey C experiment. 1 Target display; 2 Movement onset;
3 Peak velocity; 4 End of movement; 5 Reward administration. (C) Two-
dimensional target arrangement, monkey C. Left—targets individually dis-
played in VR. Right—Trajectories of the hand collected during one experiment,
with all repeated movements shown (47 per target). (D) Two-dimensional target
arrangement, monkey N. (E) Three-dimensional target arrangement, monkey F.
Trial-averaged hand trajectories are shown for monkeys N and F. In panels
(C-E), the color of the targets corresponds to that of the trajectories. See also
Supplementary Figure 1 for electrode array placement.

20 ms, and counting the spikes within each bin. Thus, although
a single bin spans 20 ms on average, it may span more or less
time on a given trial. Because time was normalized indepen-
dently between each alignment point, each segment of the task
was associated with different trial-to-trial variation in bin
length. The standard deviation of the bin length during the
most variable epoch across our data sets was 6 ms.

Lastly, we normalized firing rate by scaling its value between
zero and one based on minimum and maximum firing rate, and
subtracting the mean over targets (cross-condition mean) at each
time step. Amplitude normalization is critical only for the popu-
lation vector analyses (described below), but it is also convenient
when comparing tuning characteristics between neurons with a
different range of firing rates. Subtracting the cross-condition
mean allowed us to focus on the dynamics of tuning, rather than
dynamics shared across targets. All analyses described below
used the time-normalized data. All analyses except those
described in Supplementary Figure 3 used the mean-subtracted,
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amplitude-normalized changes in firing rates. Analyses described
for that figure relate firing rates to kinematic variables, which in
principle may modulate spiking irrespective of target (e.g., scalar
speed or displacement). These preprocessing steps were, there-
fore, not performed on data used in those analyses.

We sometimes observed that neurons would fire at rates
that were unexpected, based on their typical trial-to-trial vari-
ability. If this happened in the same trial for many of the units
in the recorded sample, all data for that trial were removed to
improve the robustness of nonlinear model fitting (described
below). The firing rate profiles from individual units were ana-
lyzed as vectors in time. Each trial vector was correlated with
all the other trials to that target (using dot products) and if the
mean correlation between that trial and all others was below
0.2, it was deemed to be of “high variance.” This was repeated
for each individual unit in that trial. If more than 84% (the per-
centile corresponding to mean+1 std on a normal distribution)
of the neurons had high variance for that trial, the trial was
excluded (for all neurons) from further analysis. Fewer than
15% of trials were excluded due to this criterion. Interestingly,
the low firing rate correlation between a given trial and the
mean firing rate was not strongly related to kinematic variabil-
ity, suggesting that the high variability was due to noise, for
example from movement artifacts in the neural recordings.
Results of individual analyses did not depend critically on this
exclusion, though the robustness of nonlinear model fitting
(“component fitting,” see below) was improved.

PD Stability Test

Tuning functions were calculated using the firing rates in 20 ms
increments to determine statistical changes in directional tun-
ing for each unit. We estimated cosine tuning functions from
the recorded neural data using least squares linear regression
based on the following model:

Y = Bo + ﬁ1 Cos(etarg — Opp) + &, 2)

where y. =4, is the single-trial estimate of a neuron’s firing
rate, p, is baseline rate, Otarg — 6pp is the angle between the tar-
get direction and the neuron’s PD, and ¢; is the noise (or error)
representing the deviation from cosine tuning. We define
m = B, as the estimated magnitude or modulation depth of the
tuning function. The extension to the 3D target arrangement
involves expressing the cos(firg — Opp) covariate as the dot
product of 2 unit-length 3D vectors. Two versions of this model
were constructed assuming either that PDs are fixed in time
(Eq. 3) or that PDs change over time (EqQ. 4). We reasoned that if
PDs were actually constant, allowing the fitted PD to vary with
time would not significantly improve the likelihood of the
model. Furthermore, the variation in firing rate between time
bins would be sufficiently described by a change in the modula-
tion depth of the stable tuning function. We thus formulated a
“restricted” model with a static PD such that

yl',[ = ﬁo,t + ﬁl,tcos(etarg — Opp) + Eity (3)

where t denotes time. We then formulated an “unrestricted”
model with time-varying PD such that

Yir = Bo,e + B1,:COSBrarg — Oppy) + €i 4)

After fitting, we then summed the log-likelihoods of the
model fits at each time bin. To compare the models’ relative
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goodness-of-fit, we performed a likelihood-ratio test. The test
statistic is given as

D = —2In(likelihood of restricted model)
+ 2 In(likelihood of unrestricted model) 5)

The null hypothesis of the test represents the case that the
restricted (i.e.,, constant PD) model is as likely as the unre-
stricted (i.e., time-variant PD) model, given the data. The value
of D under the null hypothesis is assumed to follow a chi-
squared distribution with degrees of freedom equal to the dif-
ference in degrees of freedom between the 2 models. The
restricted model had 1 + T degrees of freedom in the 2D target
case, or 2 + T in the 3D case: one (or two) from 0pp, and T from
the B, , parameters, where T is the number of time steps in the
testing period. The unrestricted model had 2T degrees of free-
dom in the 2D target case, or 3T in the 3D case: T (or 2T) from
0pp, and T from the B, parameters. For the likelihood ratio test,
this gives T — 1 dfs for the 2D target case, or 2T - 2 dfs for the 3D
target case. We failed to reject the null hypothesis of “PD stabil-
ity” if the P-value of this test exceeded (0.05/number of time
bins considered). To reduce the influence of noise, time bins for
which a neuron was not significantly modulated by target
direction (one-way ANOVA, P > 0.001) were excluded from the
analysis. This is important because it allows us to be sure that
a result of “stable PD” cannot be attributed to a lack of tuning; a
model with changing PD does not improve likelihood over a
model with static PD if there is no task-related modulation of
firing.

We note that 6., in Equations (2)—(4) represents the target
direction (constant throughout a trial), rather than the instan-
taneous direction of the hand end-point. This is in contrast to
the methods utilized in Supplementary Figures 2 and 3, which
used the instantaneous hand direction. We found there was
consistent modulation of many units after the hand had
stopped, which is not expected for a model based solely on
instantaneous hand direction (see, for example, Supplementary
Fig. 2B, left subpanel). Using the true hand direction was there-
fore only valid for part of the trial. Instead, cosine tuning to tar-
get direction was consistently found to be robust at most time
points in the trial (Fig. 3B).

Tuning Reliability Over Time

Trial-to-trial reliability of PD estimates (Eq. 2) at each 20ms
time bin was assessed by bootstrap. We first found the PD
within each time bin for each unit using the original sample of
data. Firing rates for each unit were then sampled with replace-
ment across trials 1000 times. At each time bin, a distribution
of unsigned angles was formed by finding the arccosine of the
dot product between the unit vectors representing the original
PD estimate and each of the bootstrap estimates of PD (from
the trial resampling). We then found the 95% confidence inter-
val of these angles from the percentiles of this distribution.
This interval is described for the population of neurons in
Figure 3A.

Component Fitting

Our 20ms tuning analysis showed that PDs tended to
change in discrete steps during the reach. These steps, or
segments, had durations of 100-150 ms and we used a novel
component-fitting procedure to identify each tuning epoch
(Eq. 6). Inspection of the sequential tuning functions along
with firing rate profiles revealed that the modulation depths
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Figure 3. Stability vs. time for the population. (A) Reliability of PD estimates. To determine trial-to-trial variability (width of confidence interval) for each neuron and
at each time bin, PDs were repeatedly estimated using a bootstrap method (see Materials and Methods). Black lines show the population median for width of PD confi-
dence intervals (95%) computed by the bootstrap; gray lines show quartiles (Q1, Q3) for the population. The distribution began narrowing 200 ms before movement
onset, with tuning becoming maximally reliable for most neurons around movement onset. (B) The same reliability trend was found when using R? for the cosine tun-
ing regression. Tuning functions for each neuron were calculated in each 20 ms bin by averaging firing rates over task repetitions. Black and gray lines show the popu-
lation median, Q1, and Q3 R? of the cosine fits to each neuronal tuning curve. (C) PD stability was assessed within 200 ms overlapping windows that were
incremented in 20 ms bins. The stability test, used previously for the whole trial, was then applied to each 200 ms window for each analyzed cell. To decrease the
influence of noise, bins with poor tuning (R? < 0.6) were excluded. The percentage of units with stable PDs peaked 100 ms before movement onset, decreased toward
the beginning of movement, and then gradually increased toward the end of the movement when the cursor was in the target. Square markers in panel C correspond
to target show, movement onset, peak velocity, movement offset, and reward administration.

tended to rise and fall in roughly Gaussian-shaped peaks, or
components. PDs were consistent for the duration of a com-
ponent, but could change abruptly from one component to
the next. We, therefore, developed a model of firing rates
that captured the observed Gaussian-shaped modulation
and step-like cosine tuning features (Fig. 4A,B,E). For conve-
nience, we chose to fit the modulation depth profile with a
multi-component Gaussian function. Although this general
function shape fit our data well, other forms likely could be
substituted.

This model (Eq. 6) defines cosine-tuned Gaussian-shaped
components, specified in part by peaks in the amplitude of the
neuron’s tuning function, observed at different points in time
through the task. The components are further defined by a PD,
which was assumed to be constant for the duration of the com-
ponent (an assumption which was subsequently tested for
each component). Because PDs were specified separately per
component, the overall PD of the neuron was allowed to rapidly
change from one component to the next. These features were
simultaneously captured by the following expression, which
we refer to as an epoch-specific tuning model:

J —(t - ”)_)2
¥i=Bo + E a; exXp 0 c0s(Btarg — GPD).) + & (6)
J

j=1

Here, y. = }; is the expected change in single-trial firing rate
at each time t, given a target 6..r¢. Baseline firing rate is denoted

Bo- For each of the ] components, the modulation depth was fit-
ted with a Gaussian temporal profile. Thus, the jth width coeffi-
cient s; specifies the standard deviation of the Gaussian profile,
and the time of maximum firing rate (g;) is given by u;. The
term ¢; is the noise (or error) representing the deviation from
the model. Once initialization parameters were obtained (see
Supplemental Experimental Procedures 3), final estimates of
each parameter were fit using nonlinear least squares regres-
sion for the full model given in Equation (6).

For neurons recorded from monkeys C and F, we often
observed a period of tonic firing during the hold period.
Monkey N was not required to hold at the target and neurons
recorded during this task did not exhibit this activity. Although
this activity was typically also cosine-tuned, we intentionally
avoided fitting components here, as this activity was not
believed to be related to the preceding movement but rather to
the act of holding at the target (Kettner et al. 1988). Examples of
this activity can be seen at the end of the trial period for units
59a and 79a from monkey C (Fig. 4, top row) and in
Supplementary Figure 5.

PVA Analysis

The PVA was used to decode movement direction from motor
cortical units. To assess the effect of tuning lability on our abil-
ity to decode movement, we reconstructed movement trajecto-
ries with 3 different formulations of the population vector.
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Figure 4. Episodic modulation patterns. Firing rate patterns of 4 different neuronal units are shown in columns. (A) The first row shows trial-averaged firing rate pro-
files for each target direction. Square markers correspond to alignments on target show, movement onset, peak velocity, and movement offset. (B) Tuning function
amplitudes (estimated modulation depth, i) calculated in each bin are shown in the second row. (C) Gaussian-shaped components fit to the tuning amplitudes are
shown in the third row. (D) Eigenvectors calculated from correlation matrices across bins are shown in the fourth row (darker line intensity for eigenvectors with
more explanatory power). (E) PDs computed repeatedly over the course of the trial are shown in the fifth row. The darkened portions highlight the 100 ms period cen-
tered on each Gaussian-shaped component and which was tested for PD stability. Error bars show the 95% CI (computed using bootstrap, see Materials and Methods).

PVA Using Initial PDs

We found that tuning becomes maximally reliable across the
population of cells shortly after target onset (Fig. 3A,B). In our
first formulation of the PVA, we therefore computed a single PD
for each cell using the average rates in a 100 ms window of ini-
tial tuning. To account for small variations in tuning onset, and
to ensure robust cosine fits, the windows were determined for
each cell by finding the first 100ms of significantly modulated
activity. Population vectors were then computed for each trial
using the equation:

N
b= 2 w; G, @)
i

where P, is the population vector at time t on a given trial, w;
is the amplitude-normalized firing rate of the ith unit at time
t, and C; is the single PD of the ith unit. To make direct com-
parisons between this analysis and a component-based
analysis, units were included only if at least one component
was successfully fitted (see Fig. 5). The time series of popula-
tion vectors was integrated and averaged over task repeti-
tions to construct a movement trajectory for each reach
direction.

Component-Based PVA

Our second formulation of the PVA addressed whether PDs
determined by each component in the epoch-specific tuning
model would improve trajectory reconstruction. In the epoch-
specific tuning model (Eq. 6), the PD of a single cell is constant
during a tuning component but transitions rapidly to a new
value when the component switches. We computed these
component-determined PDs at each time bin for each cell using
the epoch-specific tuning model fits. Population vectors were
then computed using:

N
b= 2 wi; Cig ®
i

Here, the PD C of each unit, i, is a function of time, t.

Bin-by-bin PVA
Finally, to determine whether PD lability at a temporal resolu-
tion higher than that of the components would further improve
decoding, we computed a third version of the PVA using
Equation (8), but, unlike the component-based method, the PDs
were computed independently in each bin.

In each of these 3 cases, we quantified the average length of
the population vectors and their angular deviation from a
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Figure 5. PD stability during component times. (A) Component-wise directional
stability. The majority of fitted components for each monkey were found to
have stable PDs for the 100ms period centered on the component peak (see
Materials and Methods for statistical method). (B) Number of stable compo-
nents fit per neuron. The majority of components had stable PDs for at least
100 ms. When considering the number of components fit per neuron, regardless
of stability, the breakdown was similar. From 0 to 3 components, the percen-
tages for monkey C were 27, 33, 35, 4; for monkey F 6, 56, 34, 3; and for monkey
N 39, 42, 18, 0. Total number of components fit for monkeys C, F, and N was
109, 161, and 146, respectively.

straight path to the target. The quality of decoding was sum-
marized by first obtaining the length and angular deviation of
the population vectors for each trial and at each time bin. All
such values were then averaged. The variability in these esti-
mates was computed via bootstrap by drawing trials randomly
with replacement and re-calculating the measures using firing
rates from the resampled trials. This process was repeated 1000
times.

Offline Component Recognition

In order to test the feasibility of using the component-wise PDs
in a real-time population decoder, we investigated the possibil-
ity that patterns of population activity could be used to identify
the tuning component driving a single unit at any given time
point. This would be useful for real-time tracking of each neu-
ron’s “current” PD during online decoding experiments, based
on the concurrent activity of each recorded neuron. We trained
classifiers (Linear Discriminant Analysis, LDA), one separately
for each unit, using the firing rates from every unit in the
recorded population. That is, a feature vector at a given trial
and time bin was constructed by gathering the rates of every
neuron during that bin. For each unit’s classifier, class labels
were defined by the previously identified tuning segments, as
delimited by the intersections of the adjacent components fit
for that unit. The intersections were taken to be the point at
which one component’s amplitude became larger than the pre-
vious component’s. These labels were used to train the linear
discriminant classifier for that unit. Once trained, the classifier
utilized the feature vector of population rates at each 20ms
sample in each trial to predict the “current” segment of the
neuron’s response (and thus its PD at that time). Classification
was performed only for units with at least 2 components.

Additional Data Collection

Data from a fourth monkey (M. mulatta, male, monkey P) were
collected to clarify the effect of target acquisition strategy on
the observed pattern of component timing. Monkey P was
trained to distinguish the stop-and-hold requirement by the
color of the target, which was chosen at random for each trial.
This monkey performed the task for several months prior to

collecting these data. Behavioral setup, training, and array
placement were comparable to those for the other 3 monkeys.
Neural data were acquired and sorted using the procedures
described for monkey N. Data from monkey P were pooled over
3 days of recording and included a total of 139 neurons (average
46.3 per day).

Results
Expanded Models Do Not Account for PD Lability

Data were collected as monkeys performed center-out tasks
using target arrangements in 2 and 3 dimensions (Fig. 2, see
also Materials and Methods). Speed profiles over each move-
ment were bell-shaped, displacement increased monotonically
and acceleration profiles were biphasic, showing that these
movements are consistent with smooth point-to-point move-
ments typical of normal reaching (Fig. 2B). To determine
whether directional tuning changed within the task, we divided
each trial into 20ms time bins, and calculated local tuning
functions for individual neurons in each bin. A PD stability test
(see Materials and Methods) was used to determine whether
local PDs, calculated in each bin, differed from the mean PD
taken from the period 100 ms prior to movement until the end
of the movement. By this criterion, only 21%, 8%, and 16% of
the recorded units in monkeys C, F, and N, respectively, were
found to have tuning functions that were stable throughout the
task.

This temporal instability could result from a statistical inter-
action between direction and parameters that take on varying
values throughout the task. Displacement, speed, and accelera-
tion have characteristic temporal profiles during reaching
(Fig. 2B). To explore the possibility that adding a combination of
these kinematic terms to the regression equation could account
for the observed instability of PD, we built simulations of firing
rate using a mixture of kinematic variables. The resulting firing
rate profiles were complex and resulted in tuning function
instability through the trial (see Supplementary Fig. 2). This
possibility was tested on actual data, by using the firing rates of
each unit in 16 different generalized linear models consisting
of different combinations of direction, position, speed, velocity,
and acceleration (see Supplementary Fig. 3A). Although specific
parameters had a slight effect on model fitness, for the most
part, adding additional parameters to the basic direction-only
regression had little effect on the explanatory power of the
model when used on actual data, as shown by the consistent
goodness-of-fit (see Supplementary Fig. 3B). When assessed for
temporal lability in the PDs (see Supplementary Fig. 3C), none of
the models led to a decrease in the magnitude of PD changes.
Furthermore, accounting for additional kinematic terms had lit-
tle effect on our statistical assessments of tuning stability for
each individual neuron (see Supplementary Fig. 3D).

The large majority of deviations from stability in our data were
small (2040 degrees), but significant. Although our simulations
showed that including a mixture of kinematic parameters could
lead to directional instability, this analysis, performed on the col-
lected data, suggests that simply expanding the basic model with
more terms cannot explain the observed changes in PD.

Cosine Tuning is Robust Throughout Trials, Even
in the Presence of PD Lability
We characterized tuning function stability during the task with

a number of analyses. Trial-to-trial directionality in each bin
was examined by selecting randomly (with replacement) firing
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rates from different trials and calculating PDs repeatedly in a
bootstrap procedure (Fig. 3A). Early in the trial, PD estimates for
each neuron were highly unreliable (large confidence intervals),
with a rapid increase in reliability about 100 ms before move-
ment onset. A similar trend was found for the cosine tuning
regression fit in each bin, where R? increased steeply just before
movement onset (Fig. 3B). Instead of assessing directional tun-
ing independently in separate bins, tuning stability across bins
was assessed in 200 ms (10 bin) sliding windows using the PD
stability test (Fig. 3C). The percentage of cells with constant PDs
in the 200 ms window was relatively high (ca. 75%) early in the
trial and then decreased to a minimum (ca. 25%) around move-
ment onset, before increasing as the movement progressed.
While directional tuning may not be robust early in the reach
(large confidence intervals), the decrease in PD stability near
movement onset occurred when the data fit the cosine tuning
model well with high reliability (Fig. 3A,B). The instability of
PDs by this point in the reach therefore cannot be explained by
unreliable tuning or low R? of a cosine fit.

When testing for changes in PDs during the behavioral
trials, it would appear that directional stability is related to sep-
arate portions of the task. For instance, if only the firing rates
prior to movement onset are considered (—150 to =50 ms), 90%,
81%, and 74% of the units (monkeys C, F, and N) had stable PDs.
However, immediately after movement onset (0-100 ms), only
35%, 72%, and 50% of units were stable.

Episodic Modulation Determines Changes in PD

As shown in Figure 1, the temporal profile of firing rate can be a
determinant of directional stability. Therefore, we analyzed the
modulation patterns of the recorded activity for consistent fea-
tures that may be related to directional tuning. We character-
ized direction-related modulation by using the amplitude of
the tuning function (modulation depth) calculated in each
20ms bin throughout the task. Tuning function amplitude is
shown in the second row of Figure 4 for 4 different neurons.
The neuron in the first column had one clear modulation peak,
the neurons in the second and third columns had an early peak
followed by a later peak in modulation, and the cell in the
fourth column showed 3 distinct modulation components. For
each neuron, we modeled this modulation with an epoch-
specific tuning model (Eqg. 6) and the resulting Gaussian-shaped
components are shown in the third row of Figure 4. PDs calcu-
lated within the timespan of each component were found to be
stable, but these directions changed rapidly between epochs
(Fig. 4, bottom row).

We next used principal components analysis (PCA) to find
components of each unit’s firing rate profile that covaried. This
allowed us to examine prominent temporal features in the fir-
ing rate profiles without making assumptions about tuning
curve shape (i.e.,, a cosine). Averaging across trials, we con-
structed a vector for each bin with components of firing rate to
each target condition. We then used PCA on an T x T covari-
ance matrix where T was the number of bins in the trial (this is
sometimes referred to as “functional” PCA). The resulting
eigenvectors are a function of time and represent orthogonal
patterns of firing rate modulation taking place during the trials.
Note that there is no consideration of directionality here, as
this PCA was based solely on the variation of the observed fir-
ing rates, in contrast to the epoch-specific tuning model which
was based explicitly on the typical cosine-tuning model. The 2
approaches gave very similar results: The first few eigenvectors
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from our PCA captured variability that was described well by
the epoch-specific tuning model (Fig. 4, fourth row).

Dividing each reach into segments determined by the
epoch-specific tuning fits showed that within those segments,
PD was typically constant for at least 100ms (5 time bins) as
defined by our PD stability test (Fig. 5A). Within each segment,
firing rates were well described by cosine tuning (see
Supplementary Fig. 4A). Further, the trend toward stability was
evident even when considering only the components with very
good fits to a cosine function (proportion of yellow to blue in
rightmost bars in Supplementary Fig. 4A). A majority of the
neurons had a single stable component and units with 3 stable
components were rare (Fig. 5B). When “unstable” components
were analyzed, the amount of PD change was found to be quite
modest despite being statistically significant (see Supplementary
Fig. 4B). Possible reasons for this finding (e.g., a conservative
stability criterion) and further discussion are given in
Supplementary Figure 5.

The PD differences between successive components in the
example neuron displayed in the fourth column of Figure 4
were approximately 180°. Although the difference in PD between
components was most often statistically significant (see
Supplementary Fig. 4C, blue vs. yellow), this extreme change in
PD was rare. For cells with multiple components, the angles
between them (see Supplementary Fig. 4C) tended to be small,
with 37% having values below 45° and only 11% in the 135-180°
interval.

We next considered the effect of smoothing the recorded fir-
ing rates prior to using the PD stability test. Since the test eval-
uates sequential time bins, smoothing the rates decreases the
effective number of degrees of freedom. Given the same test
statistic (Eq. 5), the frequency of type II statistical error would
then increase, inflating the reported number of “stable” compo-
nents. However, smoothing also reduces the amount of noise
in the firing rates, which in turn changes the value of the test
statistic and has the opposite effect on the outcome of the sta-
tistical test. To directly assess these opposing effects of
smoothing, we again used the PD stability test on the compo-
nent data, but without applying any smoothing to the firing
rates (aside from binning in 20ms bins). We found that
smoothing had very little effect on the results of the stability
test. For components from monkey C, we found 65% to be sta-
ble after smoothing, and 69% stable without smoothing; from
monkey F, we found 87% stable after smoothing and 80% stable
without smoothing; from monkey N, we found 70% stable after
smoothing and 71% stable without smoothing.

To assess the sensitivity of our stability test to different
amounts of PD variation in the presence of realistic noise, we
generated simulated firing rates with a preset amount of PD
change (see Supplementary Fig. 6A). To approximate the char-
acteristics of our experimental data, simulated rates were
matched to each recorded neuron in terms of cosine-tuning
modulation depth and trial-to-trial firing rate variability. To
directly compare our simulation to the experimental data, we
restricted the test to 100 ms (5 bins) windows centered on each
of the Gaussian-shaped components that were fit to the real
data using the epoch-specific tuning model. Therefore, the sim-
ulation results are best compared with those reported in
Figure 5A. Modest changes in the simulated PDs were consis-
tently identified as “unstable” by our test (see Supplementary
Fig. 6B). Given that our simulated rates were carefully matched to
the real data in noise and tuning depth, this finding suggests that
change in the actual PDs during these components is minimal.
Indeed, if the PDs within components do change, those
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changes are considerably smaller than those typically observed
between components (see Supplementary Fig. 4C).

Although a cosine function described the firing rate data well
at most time points, it is possible that our PD stability test was
biased by imperfect fits. We therefore utilized another method
for evaluating tuning stability based on the correlation between
target-specific firing rates, which does not assume any paramet-
ric shape. We used this correlation metric to characterize our
data in several ways, and found strong evidence for periods of
stable directionality punctuated by rapid changes in tuning,
without the assumption of cosine-tuning. These analyses and
findings are described in detail in Supplementary Figures S7-10.

Segments of Tuning Occur at Similar Task Times
Across the Population of Neurons

Next, we asked whether the timing of components was consis-
tent across the population of recorded cells. The times in the
trial of each stable component (specified by the time of the
Gaussian-shaped modulation peak) were used to build histo-
grams separately for each monkey (Fig. 6). Analysis of the
histograms showed that the collective components from indi-
vidual cells tended to cluster into 3 epochs within the reach
trial. The timing of these global epochs was consistent across
monkeys, and tuning functions calculated throughout the trial
tended to have maximum amplitude and consistent PDs within

these 3 epochs. Interestingly, the clustering we observed for
monkeys C and F was clearly more distinct than for monkey N,
and for this monkey, the probability of observing components
later in the task decreased. Monkeys C and F were required to
stop and hold in the target before being rewarded, while mon-
key N was rewarded as soon as the cursor touched the target.
The behavioral significance of this event therefore differed
across monkeys. Because the third directional epoch is cen-
tered around the time the target was acquired, and was less
prominent in monkey N, the directionality reflected at that
time may be related to arresting the movement.

To test this hypothesis, we trained a fourth monkey (“P”) to
perform a center-out task in which the stop-and-hold require-
ment was cued by target color. The monkey performed this
task for several months prior to collecting behavioral and neu-
ronal data over 3 days. We then repeated our component-
fitting procedure separately for “hold” and “no hold” reach
trials, fitting a total of 265 components in the “hold” task and
184 components in the “no hold” task (231 stable in the “hold”
task; 143 in the “no hold” task). We found that the number of
neurons with components observed in the third epoch was
markedly decreased in “no hold” trials (Fig. 6, histograms for
monkey P in panels A and B). Further, the separation in time of
the 3 epochs was enhanced in the “hold” trials compared with
“no hold” trials. This dissociation was most obvious when we
combined data from the 4 monkeys and built histograms
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Figure 6. Temporal distribution of tuning components. The timings of Gaussian-shaped peaks from “stable” components were used to make histograms of compo-
nent occurrence for each monkey (left columns in A and B). Gaussian mixture models were fit to component times, and the Akaike information criterion (AIC) was
computed for fits with 1 through 5 clusters (right columns in A and B). We consistently observed a minimum AIC for 3 clusters, suggesting components fall into 1 of 3
epochs, which are similar across monkeys. (A) Stable component times observed during “hold” tasks. (B) Stable component times observed during “no hold” tasks.
Histograms in the bottom row of A and B represent data pooled from each preceding histogram. The 3 epochs are most distinctive in the “hold” task, but can also be
observed in the “no hold” task. Movement begins at Time = 0 and the filled square symbols denote the behavioral events of target show, peak velocity, movement off-
set, and end of hold (if relevant). The time scales in A have been scaled linearly between event times to match those of monkey C; time scales in B have been scaled
to match monkey N.

Downl oaded from https://academ c. oup. conf cercor/article-abstract/28/7/2326/ 3862195
by Western Psyc Inst & Cinic user
on 13 June 2018



separately for the 2 task requirements (Fig. 6A,B, bottom row).
Requiring an accurate target acquisition prolonged the last
phase of the reach, as we found that monkey P entered the tar-
get zone 43 ms sooner in the “no hold” trials than in the “hold”
trials, measured relative to movement onset (t-test, P = 3.3 x
1077°, t = 19.4, df = 3391, 95% CI = [38 ms, 47 ms]). These results
support the idea that the third component is associated with
the terminal portion of the reach.

Regardless of task type, the earliest period of stable tuning
began about 100 ms before movement onset, and peaked about
50 ms later. The timing of the second epoch peaked later in the
reach, about 50 ms before the arm reached its peak velocity.
The third epoch began around peak velocity and peaked
approximately at the end of the movement. Most cells had a
single modulation peak that contributed to one of the 3 epochs,
although some cells had multiple directional components that
fit into these epochs. Those cells with directional firing in an
epoch tended to have stable PDs within that period. As shown
by our tuning function analyses (Fig. 3A,B), directional tuning is
not evident early in the trial. The sharp increase in tuning func-
tion fit about 100 ms before movement onset corresponds to
the beginning of the first global tuning component which peaks
about 50 ms before movement onset (Fig. 6). A second, separate
directional feature peaks subsequently, overlapping the first, so
that 2 strong and sequential directional signals in the neural
population are evident during the reach. Single neurons driven
by both signals could be found to have temporally distinct tun-
ing functions with different PDs (for example, the units in the
middle 2 columns of Fig. 4).

Accounting for Tuning Changes can be Important
for Accurately Decoding Reach Trajectory

The concept of directional tuning in the motor cortex has
received a great deal of support since its introduction in the
early 1980s (for a review- Georgopoulos and Carpenter 2015).
One of the first population vector demonstrations showed that
the representation of direction evolved and pointed consis-
tently to the target during center-out reaches (Georgopoulos
et al. 1984). Following that work, neural trajectories were con-
structed by adding the time-series of population vectors tip-to-
tail, and were found to closely match the trajectory of the arm
when reaching to targets (Georgopoulos et al. 1988) and when
drawing a variety of figures (Schwartz 1993, 1994a, 1994b;
Moran and Schwartz 1999; Schwartz and Moran 1999).

How could such a large body of work, based on the idea of a
fixed PD, produce successful movement predictions if the tun-
ing function is labile? Because the typical tuning model is a
cosine, the firing rate average over multiple epochs of cosine
tuning is also well-described by a cosine, even if PD changes
occur between epochs (see Supplementary Fig. 11). As is the
case with many center-out reports, using this average PD in the
PVA yields accurate decoding, tending to minimize the errors
due to PD changes between epochs. We found that directional
tuning begins 100ms before movement onset and extends
beyond the end of movement. Using the amplitude of direc-
tional tuning, we identified 3 separate epochs. Within each
epoch, PD was constant. The first 2 epochs spanned the initial
portion of the reach. A change in PD within this span is rare;
most cells had only one modulation component (occurring in
the first or second global epoch) in this peri-movement period.
Indeed, when we restricted our data sample to this portion of
the task, trajectories decoded with population vector analysis
were accurate (see Supplementary Table 1B). Because confining
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the data to this portion of the task is common practice, the
issue of labile PD has not been identified as a major problem in
decoding experiments. Most of the directional lability found in
our data samples came from the early reaction time portion of
the task when directional drive was weak, or later in the task
as the target was acquired and held, which may be a phase dis-
tinct from the initial portion of the movement. It should be
noted that our analyses focused on directional modulation and
this may differ substantially from overall firing rate modula-
tion. Casual examination of our data suggests that firing rate
modulation tends to decrease through the reach, while direc-
tional modulation (e.g., in the third component) may still be
significant. Since the PVA is based on firing rate modulation,
distortions of the neural trajectory toward the end of the reach
due to changes in PD may be marginalized by lower firing rates.

As a linear decoder, the population vector is optimal when
neurons have cosine tuning functions and the recorded sample
has a uniform distribution of PDs (Salinas and Abbott 1994;
Kass et al. 2005). Deviations from cosine-tuning will lead to
inaccuracies in the decoded movement. Furthermore, when the
PD of a neuron changes during a movement, trajectories
decoded from a time-series of population vectors can be dis-
torted if these non-stationarities are not taken into account.
Population vector trajectories were constructed for the reaches
performed by each monkey (see Materials and Methods).
Results from monkey C are shown in Figure 7. When neural tra-
jectories were constructed with a single PD taken as the initial
occurrence of significant tuning, the neural trajectories were
distorted and shortened in the 10 and 4 o’clock directions
(Fig. 7A). However, use of component-wise PDs in the corre-
sponding portion of each trial led to more accurate population
vectors (Fig. 7B, see Supplementary Table 1A). It could be
argued that if a cell’s directionality changed constantly during
a reach, the most accurate reconstruction could be achieved
using PDs with a high temporal resolution. To test this idea, we
calculated PDs in each bin for every cell in the sample, and
computed the trajectories in Figure 7C. These reconstructed tra-
jectories were only slightly better than those generated with
the component-wise PDs (Fig. 7B), suggesting that the compo-
nents adequately captured the changes in directionality that
lead to decoding errors. It should be noted, however, that these
considerations apply mostly to the last portion of the trajec-
tory. If the analysis is confined to the portion of each trial
defined by the first 2 global components (Fig. 6) around the
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Figure 7. Population vector reconstructions of cursor trajectories to 16 center-
out targets for monkey C. Neural trajectories were generated by calculating
population vectors in each bin (from 100 ms prior to movement until 100 ms
prior to end of trial) and adding the vectors tip-to-tail. Target colors are as in
Figure 2. (A) The population vectors were calculated using a single, initial PD for
each neuron. This method resulted in highly distorted trajectories. (B) PDs from
within each component (see Materials and Methods) were used to construct the
population vectors. This method largely remedied the distortions seen in A. (C)
Tuning functions were calculated in each time bin and their PDs were used for
the neural trajectories. This method yielded only modest improvements over
the method used in B.
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time of movement, using a single PD for that epoch was almost
as effective as using separate components (see Supplementary
Table 1B).

Offline Identification of System State Enhances Accurate
Decoding

Assuming that the directional components effect changes in
directionality simultaneously for many neurons, it should be
possible to identify, at any point in time, which component is
acting as the current driver on a neuron. The identity of the
component could then be used as an index to the unit’s
component-wise PD. Using each cell’'s segment-specified PD
would be expected to generate a more accurate readout of the
arm’s direction than a prediction produced with a single PD.
This real-time readout would be useful, for instance, in neural
prosthetics. To demonstrate the utility of this approach, the
“current” tuning segment of each neuron was detected on each
trial and in each time bin by using the concurrent activity of all
simultaneously recorded units in a linear-discriminant analysis.
This showed that the individual components of neurons could
be identified with high accuracy for the 3 monkeys (Fig. 8).

To illustrate the feasibility of real-time decoding of move-
ment trajectory using the components model, we performed an
additional PVA analysis (based on Equation 8 in Materials and
Methods). In this version, the PD at every time step in each
individual trial was defined by the PD of the component
detected by the LDA for that sample. The identified compo-
nents, when used to specify each neuron’s PD (per trial and
time bin), produced population vectors that were comparable
to those in Fig. 7B. We used a bootstrap procedure to compare
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Figure 8. Offline component recognition. We investigated the possibility that
patterns of population activity could be used to identify the tuning segment
(component) of each single unit at any given moment in a trial. We trained
classifiers (LDA), one for each unit, using the concurrent firing rate samples
from every simultaneously recorded unit. For each unit’s classifier, samples in
each bin were labeled based on their timing, relative to the unit’s previously fit-
ted components, with transitions delimited by the point at which one compo-
nent’s amplitude became larger than the previous component’s. These labels
were used to train the linear discriminant classifier for that unit, which was
then used to predict the “current” temporal epoch for each 20 ms sample during
each trial. Five-fold cross-validated success rates for units with at least 2 com-
ponents were high: 94.7 + 1.4%, 95.2 + 1.6%, and 92.5 + 2.0% for monkeys N, F,
and C, respectively. Histograms of success rate per unit are displayed for each
monkey. Success rate by chance was computed by randomly shuffling the
group labels prior to training the classifiers, and yielded much worse classifica-
tion: 50.1% =+ 0.3, 48.8 + 5.1%, and 482 + 5.4% for monkeys N, F, and C,
respectively.

the magnitude and angular accuracy of population vectors
computed this way with those computed using the true labels.
The results of this method did not significantly differ from
those using each cell’s “ground truth” components (bootstrap
test, P > 0.05 for each monkey).

Discussion

Although the center-out task invariably shows that the mean
discharge rate of neurons is tuned to movement direction, varia-
tions of the task in which consideration of speed/amplitude
(Churchland and Shenoy 2007), shifts in workspace location
(Caminiti et al. 1990), movement fragments (Hatsopoulos et al.
2007), isometric hand forces (Sergio and Kalaska 1998, 2003), arm
posture (Scott and Kalaska 1995), limb biomechanics (Suminski
et al. 2015), and covert encoding perturbations during brain-
controlled tasks (Jarosiewicz et al. 2008) have shown that direc-
tional tuning functions are labile. Since some of this directional
instability has been found within single reaches, concerns have
been raised that the apparent representation of movement
direction may be secondary to other aspects of motor control
such as force generation (Sergio et al. 2005), oscillatory dynam-
ics (Shenoy et al. 2013), or intrinsic skeletal-muscular action
(Suminski et al. 2015). One of these papers (Suminski et al. 2015),
using a center-out task, reported rapid changes in motor cortical
PDs around movement onset, a finding that is congruent with
the transition between components 1 and 2 found in our work.
Instead of attributing this transition to behavioral aspects of the
task, these investigators suggested that the PD changes were
related to successive recruitment of different muscles during the
task, with the argument that the primary determinant of a
motor cortical neuron’s PD is the set of muscles to which it is
connected. The primacy of motor cortical activity as a driver of
muscle contraction has been controversial since the original
characterization of this cortical structure (Fritsch and Hitzig
1870). While motor cortical output undoubtedly has a role in
altering muscle excitability, it is equally clear that there is no
simple correspondence between a neuron’s firing rate and
the excitability of its “muscle field” (i.e., “upper motoneurons”)
(Phillips and Porter 1997), even for the small portion of the corti-
cofugal output that projects monosynaptically to spinal moto-
neurons (Griffin et al. 2015). The historic issue of whether the
motor cortex operates as a direct link to muscles or has a large
role in movement planning is rooted in the assumption that a
single function needs to be assigned to this anatomical
structure.

Current theories of motor control link displacement, the
generation of muscle activity, and behavioral output into a
cohesive scheme (for a review see Diedrichsen et al. 2010). In
this approach, the intended state of the arm (e.g., position and
velocity) is transformed by an “internal model” to a set of mus-
cle activations, which, in turn, displace the limb as an action
on the external world. Sensation from the movement is then
fed back to the system. The modeled transformations are serial
with the expectation that they correspond to the purported
hierarchical anatomical connectivity between brain structures.
Advocates of direct cortical participation in muscle contraction
equate the motor cortex with the internal model, as the place
where kinematics are transformed to muscle activation.
Despite the attraction of these control schemes, neurophysio-
logical results do not support the correspondence between sep-
arate brain structures and the discrete operational components
used to construct these models. Multiple brain structures at dif-
ferent levels of the proposed hierarchy have similar directional
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characteristics (Kalaska et al. 1983; Kutz et al. 1997; Turner and
Anderson 1997; Johnson et al. 2001; Suminski et al. 2015).
Describing specific aspects of function is useful for framing
concrete motor control issues, but localizing function to specific
portions of the neural substrate may have less utility. The
assignment of a single specific role to the motor cortex may be
incompatible with the functional dynamics of the motor
system.

There has been renewed interest in treating point-to-point
reaches in the context of a dynamical system. The original idea
was that an equilibrium position, defined by the joint angle
where the forces of opposing muscles balance, could be preset
before the movement began (Feldman 1966; Polit and Bizzi
1978). When the arm was released, achieving this equilibrium
would require no further input. A definitive experiment (Bizzi
et al. 1984) disproved this idea, although modifications based
on the idea of stable equilibria (Hogan 1984; Flash 1987) have
since gained traction. More recently the “set and forget” control
concept of reaching has been revived (Churchland et al. 2012).
This recent rendition posits that trajectory specification takes
place during the pre-movement period, and upon movement
initiation the inherent properties of the system move the arm
to a target. This concept can be described by a dynamical sys-
tem formalism:

A =C\+ Du;

where 1 is firing rate (the system’s state variable) and u is the
trajectory specification (the system’s input). The term C trans-
forms the current firing rate to a “change” in firing rate; CA
describes the component of firing rate change that depends on
the current firing rate itself. Similarly, D transforms the
intended trajectory u to a change in firing rate. The integral of
the first term, / Ch dt, is referred to as the “natural response”
and that of the second term, /Du dt, as the “forced response.”
In the recent “set and forget” concept, u = 0 during the move-
ment; desired velocity acts as an input before the movement
begins with subsequent movement executed by the “engine of
movement” in the absence of input. Indeed, we see non-step
like modulation of firing rate during the reaching task (e.g.,
Fig. 1A). Since this is not accounted for by different combina-
tions of movement parameters, our results suggest that there
is a system-dependent structure to motor cortical activity.
While this suggests that a putatively constant direction signal
can elicit a time-varying change in firing rate, our results also
show that encoding of directional input is consistently main-
tained during discrete epochs of stable directional tuning
throughout the movement. While this study cannot rule out
the possibility that these directional signals are components of
the natural response, our results are consistent with control
linked to behavioral drivers associated with separate states
occurring during the task.

Neural operations are likely to be determined by the differ-
ent control criteria needed during behavior. For instance,
reaching is characterized by a set of invariants or “neural con-
straints” (Bernstein 1984). A behavioral perspective can help
link our findings of directional states in neural populations to
global control issues. For goal-directed reaching, an initial
phase, characterized by a stereotypical bell-shaped velocity
profile (Morasso 1981), during which the hand moves almost to
the target, is too rapid for visual feedback to act concurrently
(Hollerbach 1982). Subsequently, a distinct terminal phase
takes place, during which the hand and target are foveated
together (Soechting and Lacquaniti 1981; Meyer et al. 1988;
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Milner 1992). Different cortical mechanisms may operate in
these phases (Brinkman and Kuypers 1972; Paillard 1982). The
first directional epoch we identified corresponds to the reaction
time, the second peaks in the initial transport phase, and the
last component is linked to target acquisition. Recent studies
based on correlational structure between units within a
recorded population suggest that this structure changes at the
onset of an arm movement (Kaufman et al. 2014; Sussillo et al.
2015). Another experiment using a reach-to-grasp task has
shown that there is a clear transition in motor cortical activity
correlation from object location to object type at the end of the
reach (Rouse and Schieber 2016). Analysis of firing rates using
Hidden Markov Models during a reaching task supports the
idea of stable regimes and sharp state transitions taking place
in the control system (Abeles et al. 1995). Together, these find-
ings support the concept of discrete processes taking place
sequentially through a task. By recognizing consistent non-
stationarities in the time-varying patterns of neural activity
associated with motor control, we can better describe details of
the processing used to generate behavior.
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Supplementary data is available at Cerebral Cortex online.
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